Over-expressing ion channel mutations in hiPSC-derived cardiomyocytes to model arrhythmogenic diseases

Marc Pourrier, Ph.D Precision Medicine & Ion Channel Retreat July 25th, 2019. mpourrier@ionsgate.com

From body surface to ion channels

Ackerman, Mayo Clin Proc 1998, 73:250-269

lon current	Effect on action potential	Effect on ECG	
I_{K} inhibition, enhanced late I_{Na} or $I_{Ca,L}$	Lengthens	↑QT	
Late I_{Na} inhibition $I_{Ca,L}$ inhibition, I_{K} opener	Shortens	↓QT	

vonsGate

Mechanisms of Torsades de Pointe arrhythmias

Disease modeling: There is a need for more predictive models

Likewise, transgenic non-cardiac human cell lines, e.g. hERG-overexpressing HEK-293 cells, were shown to model cardiac diseases insufficiently since they do not recapitulate the complex cardiac phenotype, e.g. sarcomere organization, calcium handling, metabolism, and (electro)physiology.

Many human phenotypes fail to be successfully recapitulated in these models.

The excitement of Induced Pluripotent Stem (iPS) cells

vonsGate

Modified from Strauss and Blinova. **Clinical Trials in a Dish.** *Trends in Pharmacological Sciences* 2017; 38: 4-7

5

Functional analysis of hiPSC-CMs

Overview of congenital cardiac diseases that have been modeled using hiPSC-CM

<u>Hypothesis</u>: Overexpressing mutated hERG channels in hiPSC-CM can reproduce the LQT2 phenotype.

Van Mill et al, Cardiovasc Res. 2018

hERG G628S (LQT2)

Α	KCNE2	hERG	
Extracellular Cytosol		S2 S3 S4 ++ ++ +	

Modified from Bohnen et al, Physiol Reviews, Jan 2017

hERG SSLTSV**GFG**NVSPN Kv1.2 VSMTTV**GYG**DMVPT Shaker VTMTTV**GYG**DMTPV

в

From Es-Salah-Lamoureux et al, Biophys J. 2011

Co-expression of WT hERG with G628S decreases current amplitude of WT hERG channels in HEK cells

vonsGate

Safety Pharmacology Society meeting, Berlin 2017

Transfecting hiPSC-CM using fusogenic liposomes.

Membrane Fusion – The Direct Way to Protein Expression

- Transfection competent vesicles are formed around RNA cargo
- Loaded vesicles fuse with plasma membrane of target cells
- Cargo is directly released into cytosol, bypassing the endo- / lysosomal pathway
- Instant bioavailability of cargo molecules in cytosol
- Fluorescent tracer molecule in vesicles allows for verification of successful transfection or cell sorting in flow cytometry

Ion channel of interest is tagged with GFP or Cherry.

mRNA synthesized using the mMessage mMachine[®] kit

I_{Kr} is decreased in hiPSC-CM transfected with G628S.

Wild Type (Non-transfected)

Effects of G628S on Action Potential parameters

hiPSC-CMs overexpressing hERG G628S (LQT2) are more sensitive to dofetilide.

Data summary of the effects of dofetilide on nontransfected vs. G628S transfected cells.

	Non-transfected (n=5) (Mean ± SEM)			hERG G628S (n=9) (Mean ± SEM)		
	Pre-drug	10 nM dofetilide	% change	Pre-drug	10 nM dofetilide	% change
MDP (mV)	-76±3	-64±5	-15%	-75±2	-66±3	-12%
APA (mV)	118±2	107±5	-9%	104±4	98±5	-6%
APD ₅₀ (ms)	274±20	303±22	+11%	286±20	374±37	+31%
APD ₉₀ (ms)	345±27	449±48	+30%	381±24	661±74*	+74%
No FADs			EADs in 5 cells			

No EADs

Conclusion

- Overexpressing hERG G628S in hiPSC-CM can reproduce some of LQT syndrome type 2 phenotypes.
 - Proof of principle for transfection of hiPSC-CM as a platform for small-molecule testing.
 - Follow up studies in patient-derived hiPSC-CM or using genome editing.
- Application to drug safety and personalized medicine
 - Responses to drug in "healthy" subject can be different from patients with inherited arrhythmogenic syndromes.
 - Increased drug sensitivity.
 - Predicting patient response to individualized therapy.
- Define patient-specific cellular mechanisms of inherited diseases

